On Two Iteration Methods for the Quadratic Matrix Equations
نویسنده
چکیده
By simply transforming the quadratic matrix equation into an equivalent fixed-point equation, we construct a successive approximation method and a Newton’s method based on this fixed-point equation. Under suitable conditions, we prove the local convergence of these two methods, as well as the linear convergence speed of the successive approximation method and the quadratic convergence speed of the Newton’s method. Numerical results show that these new methods are accurate and effective when they are used to solve the quadratic matrix equation.
منابع مشابه
Analytical aspects of the interval unilateral quadratic matrix equations and their united solution sets
This paper introduces the emph{interval unilateral quadratic matrix equation}, $IUQe$ and attempts to find various analytical results on its AE-solution sets in which $A,B$ and $CCC$ are known real interval matrices, while $X$ is an unknown matrix. These results are derived from a generalization of some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solutio...
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملAbout One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions
In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کامل